
What is MySQL?

MySQL is a popular open-source Relational Database Management

System (RDBMS) that uses SQL (Structured Query Language) for database

operations. While MySQL is a specific database system accessible for free and

supports various programming languages.

What is MySQL?

 MySQL is an open-source relational database management system

(RDBMS) developed by Oracle Corporation.

 It uses Structured Query Language (SQL) for database management and is

known for its reliability, speed and ease of use.

 MySQL is widely used for various applications, from small websites to large-

scale enterprise systems.

Why Use MySQL

MySQL is a popular choice for managing relational databases for several reasons:

1. Open Source: MySQL is open-source software, which means it’s free to

use and has a large community of developers contributing to its

improvement.

2. Relational: MySQL follows the relational database model, allowing users to

organize data into tables with rows and columns, facilitating efficient data

storage and retrieval.

3. Reliability: MySQL has been around for a long time and is known for

its stability and reliability.

4. Performance: MySQL is optimized for performance, making it capable of

handling high-volume transactions and large datasets efficiently.

5. Scalability: MySQL can scale both vertically and horizontally to

accommodate growing data and user loads. You can add more resources to

a single server or distribute the workload across multiple servers using

techniques like sharding or replication.

6. Compatibility: MySQL is widely supported by many programming

languages, frameworks, and tools. It offers connectors and APIs for popular

languages like PHP, Python, Java, and more, making it easy to integrate with

your existing software stack.

7. Security: MySQL provides robust security features to protect your data,

including access controls, encryption, and auditing capabilities. With proper

configuration, you can ensure that only authorized users have access to

sensitive information.

Who Uses MySQL?

MySQL is a widely-used relational database management system (RDBMS) that

caters to various user groups, from small businesses to large enterprises. Small to

Medium-Sized Businesses (SMBs): MySQL is popular among SMBs due to its

cost-effectiveness, ease of use, and flexibility. These businesses leverage MySQL

for managing their customer data, sales transactions, and other operational

databases.

2. Large Enterprises: Many large organizations use MySQL for its scalability

and reliability. Companies like Facebook, Google, and Adobe rely on MySQL

to handle large-scale databases and high-traffic applications.

3. Web Developers: MySQL is a favourite among web developers because it

integrates seamlessly with popular web development technologies such as

PHP and JavaScript. It powers many websites and web applications, from

blogs to e-commerce platforms.

4. Educational Institutions: MySQL is frequently used in academic settings for

teaching database management and SQL skills. Its open-source nature

makes it a cost-effective choice for educational purposes.

Applications of MySQL

MySQL has used in various applications across a wide range of industries and

domains, because of to its versatility, reliability, and performance. Here are some

common applications of MySQL:

1. E-commerce: MySQL is extensively used in e-commerce platforms for

managing product catalogs, customer data, orders, and transactions.

2. Content Management Systems (CMS): Many popular CMS platforms rely

on MySQL as their backend database to store website content, user

profiles, comments, and configuration settings.

3. Financial Services: MySQL is employed in financial applications,

including banking systems, payment processing platforms, and accounting

software, to manage transactional data, customer accounts, and financial

records.

4. Healthcare: MySQL is used in healthcare applications for storing and

managing patient records, medical histories, treatment plans, and

diagnostic information.

5. Social Media: MySQL powers the backend databases of many social media

platforms, including user profiles, posts, comments, likes, and connections.

PHP Database connection

The collection of related data is called a database. XAMPP stands for cross-platform,

Apache, MySQL, PHP, and Perl. It is among the simple light-weight local servers for

website development.

Requirements: XAMPP web server procedure:

 Start XAMPP server by starting Apache and MySQL.

 Write PHP script for connecting to XAMPP.

 Run it in the local browser.

 Database is successfully created which is based on the PHP code.

In PHP, we can connect to the database using XAMPP web server by using the following

path. "localhost/phpmyadmin"

Steps in Detail:

 Open XAMPP and start running Apache, MySQL and FileZilla

 Now open your PHP file and write your PHP code to create database and a table in

your database.

<?php
$servername = "localhost"; // Server name must be localhost
$username = "root"; // In my case, user name will be root
$password = ""; // Password is empty
// Creating a connection

$conn = new mysqli($servername,$username, $password);
// Check connection

if ($conn->connect_error) {

 die("Connection failure: "
 . $conn->connect_error);
}
$sql = "CREATE DATABASE geekdata"; // Creating a database
if ($conn->query($sql) === TRUE) {
 echo "Database with name geekdata";
} else {
 echo "Error: " . $conn->error;
}
$conn->close();// Closing connection

?>

 Save the file as data.php in htdocs folder under XAMPP folder.

 Then open your web browser and type localhost/data.php

 Finally the database is created and connected to PHP.

 If you want to see your database, just type localhost/phpmyadmin in the web browser

and the database can be found.

Open a Connection to MySQL

Before we can access data in the MySQL database, we need to be able to connect

to the server:

PHP mysqli connect() Function

Open a new connection to the MySQL server.

Syntax

Object oriented style:

$mysqli -> new mysqli(host, username, password, dbname, port, socket)

Procedural style:

mysqli_connect(host, username, password, dbname, port, socket)

Parameter Values

Parameter Description

host Optional. Specifies a host name or an IP address

username Optional. Specifies the MySQL username

password Optional. Specifies the MySQL password

dbname Optional. Specifies the default database to be used

port Optional. Specifies the port number to attempt to connect to the MySQL server

socket Optional. Specifies the socket or named pipe to be used

Technical Details

Return Value: Returns an object representing the connection to the MySQL server

PHP Version: 5+

PHP mysqli connect_error() Function

Return the error description from the last connection error, if any

Syntax

Object oriented style:

$mysqli -> connect_error

Procedural style:

mysqli_connect_error();

Example (MySQLi Object-Oriented)

<?php

$servername = "localhost";

$username = "root";

$password = "";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

echo "Connected successfully";

?>

Example (MySQLi Procedural)

<?php

$servername = "localhost";

$username = "root";

$password = "";

// Create connection

$conn = mysqli_connect($servername, $username, $password);

// Check connection

if (!$conn) {

 die("Connection failed: " . mysqli_connect_error());

}

echo "Connected successfully";

?>

Create a MySQL Database (Object Oriented Style)

<?php

$servername = "localhost";

$username = "root";

$password = "";

// Create connection

$conn = new mysqli($servername, $username, $password);

// Check connection

if ($conn->connect_error)

{

 die("Connection failed: " . $conn->connect_error);

}

// Create database

$sql = "CREATE DATABASE myDB1";

if ($conn->query($sql) === TRUE) {

 echo "Database created successfully";

} else {

 echo "Error creating database: " . $conn->error;

}

$conn->close();// Close database

?>

Create a MySQL Table

The CREATE TABLE statement is used to create a table in MySQL.

<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// sql to create table

$sql = "CREATE TABLE customer (

id INT(6) UNSIGNED AUTO_INCREMENT PRIMARY KEY,

firstname VARCHAR(30) NOT NULL,

lastname VARCHAR(30) NOT NULL,

email VARCHAR(50),

reg_date TIMESTAMP

)";

if ($conn->query($sql) === TRUE) {

 echo "Table customer created successfully";

} else {

 echo "Error creating table: " . $conn->error;

}

$conn->close();

?>

Insert Data into MySQL

After a database and a table have been created, we can start adding data in them.

Here are some syntax rules to follow:

 The SQL query must be quoted in PHP

 String values inside the SQL query must be quoted

 Numeric values must not be quoted

 The word NULL must not be quoted

The INSERT INTO statement is used to add new records to a MySQL table:

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

Example
<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO customer (firstname, lastname, email)

VALUES ('Janhavi', 'Patil', 'janhavi@gmail.com')";

if ($conn->query($sql) === TRUE) {

 echo "New record created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

Insert Multiple Records Into MySQL

Multiple SQL statements must be executed with the mysqli_multi_query()

function.

Example
<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "INSERT INTO customer (firstname, lastname, email)

VALUES ('Janhavi', 'Marathe', 'janh@gmail.com');";

$sql .= "INSERT INTO customer (firstname, lastname, email)

VALUES ('Devayani', 'Patil', 'dev@gmail.com');";

$sql .= "INSERT INTO customer (firstname, lastname, email)

VALUES ('Tanishka', 'More', 'tanu@gmail.com')";

if ($conn->multi_query($sql) === TRUE) {

 echo "New records created successfully";

} else {

 echo "Error: " . $sql . "
" . $conn->error;

}

$conn->close();

?>

Select Data From a MySQL Database

The SELECT statement is used to select data from one or more tables:

SELECT column_name(s) FROM table_name

or we can use the * character to select ALL columns from a table:

SELECT * FROM table_name

Example
<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "SELECT id, firstname, lastname FROM customer";

$result = $conn->query($sql);

if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 echo "id: " . $row["id"]. " - Name: " . $row["firstname"].

" " . $row["lastname"]. "
";

 }

} else {

 echo "0 results"; }

$conn->close();

?>

 First, we set up an SQL query that selects the id, firstname and lastname columns

from the customer table.

 The next line of code runs the query and puts the resulting data into a variable called

$result.

 Then, the function num_rows() checks if there are more than zero rows returned.

 If there are more than zero rows returned, the function fetch_assoc() puts all the

results into an associative array that we can loop through. The while() loop loops

through the result set and outputs the data from the id, firstname and lastname

columns.

Update Data in a MySQL Table

The UPDATE statement is used to update existing records in a table:

UPDATE table_name

SET column1=value, column2=value2,...

WHERE some_column=some_value

Example
<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

$sql = "UPDATE customer SET lastname='Bhamare' WHERE id=3";

if ($conn->query($sql) === TRUE) {

 echo "Record updated successfully";

} else {

 echo "Error updating record: " . $conn->error;

}

$conn->close();

?>

Delete Data from a MySQL Table

The DELETE statement is used to delete records from a table:

DELETE FROM table_name

WHERE some_column = some_value

Example
<?php

$servername = "localhost";

$username = "root";

$password = "";

$dbname = "myDB1";

// Create connection

$conn = new mysqli($servername, $username, $password, $dbname);

// Check connection

if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

}

// sql to delete a record

$sql = "DELETE FROM customer WHERE id=3";

if ($conn->query($sql) === TRUE) {

 echo "Record deleted successfully";

} else {

 echo "Error deleting record: " . $conn->error;

}

$conn->close();

?>

