Emoscan :
<IDOCTYPE html>

<html lang="en">

<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="csrfmiddlewaretoken" content="{{ csrf_token }}">
<title>Emotion Analysis</title>
<style>
/* General Styles */
:root {
--dark-bg: #121212;
--light-bg: #1E1E1E;
--primary: #00FFQO;
--secondary: #FF0000;
--text-dark: #FFFFFF;
--text-light: #CCCCCC;

--shadow: 0 4px 15px rgba(0, 255, 0, 0.2);

body {
margin: 0;
font-family: Arial, sans-serif;
background-color: var(--dark-bg);
color: var(--text-dark);
justify-items: center;
min-height: 100vh;
line-height: 1.6;

}

.dashboard {
min-height: 100vh;
padding: 20px;
width: 1396px;
margin-top: 52px;

}

.alert-card {
background-color: #FF0000;
padding: 15px;
border-radius: 5px;
margin-top: 10px;
margin-bottom: 20px;

color: #FFFFFF;

.content {
padding: 20px;
}

/* Real-Time Emotion Detection */
.video-feed {
background-color: var(--light-bg);
padding: 20px;
border-radius: 10px;
margin-bottom: 30px;

box-shadow: var(--shadow);

.video-container {

display: flex;

align-items: center;
gap: 20px;
}

.video-container video {
width: 60%;
border-radius: 10px;

}

.emotion-labels {
flex: 1;

}

.emotion-labels h3 {
margin-top: 0;
color: var(--primary);

}

.emotion-labels p {
margin: 10px 0;
color: var(--text-light);

}

/* Historical Data */
.historical-data {
background-color: var(--light-bg);
padding: 20px;
border-radius: 10px;
margin-bottom: 30px;
box-shadow: var(--shadow);

}

.historical-data h2 {
margin-top: 0;
color: var(--primary);

}

table {
width: 100%;
border-collapse: collapse;

}

table th,
table td {

padding: 10px;

text-align: left;

border-bottom: 1px solid var(--dark-bg);
}

table th {
background-color: var(--primary);
color: var(--dark-bg);

}

table tr:hover {
background: rgba(0, 255, 0, 0.1);

}

/* Export Options */
.export-options {
background-color: var(--light-bg);

padding: 20px;

border-radius: 10px;

box-shadow: var(--shadow);

}

.export-options h2 {
margin-top: 0;
color: var(--primary);

}

.export-buttons {
display: flex;
gap: 10px;

}

.export-buttons button {
padding: 10px 20px;
border: none;
border-radius: 5px;
background-color: var(--primary);
color: var(--dark-bg);
cursor: pointer;

transition: all 0.3s ease;

.export-buttons button:hover {
background-color: rgba(0, 255, 0, 0.8);

}

/* Footer */
footer {

background: var(--light-bg);

padding: 1rem;
text-align: center;
margin-top: auto;
width: 98%;

box-shadow: var(--shadow);

footer p {
color: var(--text-light);
font-size: 0.9rem;
margin: 0.5rem 0;
}
</style>

</head>

<body>
{% include 'mentalhealthbar.html' %}
<div class="dashboard">
<div class="content">
<h1>Emotion Analysis</h1>

<audio id="alert-sound" src=""></audio>
<div id="alert-notification"

style="display: none; position: fixed; top: 0; left: 0; width: 100%; background-color: red; color:
white; text-align: center; padding: 10px; z-index: 1000;">

ALERT: Continuous emotion detected for more than 1 minute!
</div>
<div class="video-feed">

<h2>Real-Time Emotion Detection</h2>

<div class="video-container">

<img style="width:55%; height:100%;" src="{% url 'video_feed2' %}" id="video-feed"
alt="Video Feed">

<canvas id="video-canvas" style="position: absolute; width:55%; height:100%,;"></canvas>

</div>

</div>

<div class="historical-data">
<h2>Historical Data (Averaged over 15 seconds)</h2>
<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Emotion</th>
<th>Confidence</th>
</tr>
</thead>
<tbody id="historical-data-body">
<I-- Rows will be dynamically inserted here -->
</tbody>
</table>
</div>
</div>

</div>

<footer>
<p>Developed By: Manas Premchand Chaudhari (IT 2024-25)</p>
<p>© 2024 EmoScan - Face Emotion Recognition. All rights reserved.</p>

</footer>

<script>
// Function to get CSRF token
function getCSRFToken() {

const csrfToken = document.querySelector('meta[name="csrfmiddlewaretoken"]');

if (csrfToken) {
return csrfToken.content;
} else {
console.error("CSRF token not found!");

return null;

// Global variable to store detected faces

let faces = [];

async function analyzeEmotion() {
try {
const patientld = getPatientldFromURL();
if (Ipatientld) {
throw new Error("Patient ID is missing");

}

const response = await fetch('/health/detect_emotion2/', {
method: 'POST',
headers: {
'Content-Type': 'application/json’,
'X-CSRFToken': getCSRFToken()
b
body: JSON.stringify({
patient_id: patientld
}
};

if (Iresponse.ok) {

throw new Error('HTTP error! Status: S{response.status}’);

const data = await response.json();

// Debugging: Log the response data

console.log("Response data:", data);

// Process the data
if (data.alert) {
// Play the alert sound
const alertSound = document.getElementByld('alert-sound’);

alertSound.play();

// Show an alert message

alert(data.message);

if (data.error) {

throw new Error(data.error);

}

// Update the global faces array

faces = data.faces;

if (faces.length ===0) {
return; // No faces detected, do nothing

}

// Read the response body once and store it in a variable

// Update the Ul with the detected emotions
if (data.faces && data.faces.length > 0) {
updateHistoricalDataTable(data.faces);
drawBoundingBoxes(data.faces);
}
console.log("Emotion analysis updated successfully");
} catch (error) {
console.error('Error:', error);
alert('Failed to analyze emotion: ' + error.message);
}
}

function checkForAlert(faces) {
faces.forEach(face => {
if (face.emotion === "anger' | | face.emotion === "sadness') {
alertSound.play();
alert('ALERT: Continuous S{face.emotion} detected for more than 1 minute!’);
}
};
}

function checkForAlert(faces) {
faces.forEach(face => {
if (face.emotion === "anger' | | face.emotion === "sadness') {
alertSound.play();
alert('ALERT: Continuous S{face.emotion} detected for more than 1 minute!);
}
1;
}

function exportData(format) {

const patientld = getPatientldFromURL();

fetch('/health/export_data/', {
method: 'POST',
headers: {
'Content-Type': 'application/json’,
'X-CSRFToken': getCSRFToken()
}
body: JSON.stringify({ patient_id: patientld, format: format })
}).then(response => {
if (response.ok) {
return response.blob();
}else {
throw new Error('Export failed');
}
}).then(blob => {
const url = window.URL.createObjectURL(blob);
const a = document.createElement('a’);
a.href = url;
a.download = ‘emotion_data_S${patientld}.S{format}’;
a.click();
}).catch(error => {
console.error('Error:', error);
alert('Export failed: ' + error.message);
};
}

function drawBoundingBoxes(faces) {
const videoFeed = document.getElementByld('video-feed');
const canvas = document.getElementByld('video-canvas');

const ctx = canvas.getContext('2d');

// Set canvas dimensions to match the video feed

canvas.width = videoFeed.videoWidth | | videoFeed.width;

canvas.height = videoFeed.videoHeight | | videoFeed.height;

// Clear the canvas

ctx.clearRect(0, 0, canvas.width, canvas.height);

// Draw bounding boxes for each detected face
faces.forEach(face => {

const { x, y, width, height } = face.bbox;

// Scale coordinates if necessary
const scaleX = canvas.width / videoFeed.videoWidth;

const scaleY = canvas.height / videoFeed.videoHeight;

const scaledX = x * scaleX;
const scaledY =y * scaley;
const scaledWidth = width * scaleX;

const scaledHeight = height * scaleY;

// Draw the bounding box
ctx.strokeStyle = '#O0FF0O0'; // Green color for the bounding box
ctx.lineWidth = 2;
ctx.strokeRect(scaledX, scaledY, scaledWidth, scaledHeight);
};
}
// Function to update historical data table
function updateHistoricalDataTable(faces) {
const historicalDataBody = document.getElementByld('historical-data-body');
if (IhistoricalDataBody) {
console.error("Historical data body not found!");

return;

// Add new rows for each detected face
faces.forEach(face => {
const { emotion, confidence } = face;
const row = document.createElement('tr');
row.innerHTML ="
<td>S{new Date().toLocaleString()}</td>
<td>S{emotion}</td>
<td>${confidence.toFixed(2)}%</td>
// Insert the new row at the beginning of the table body

historicalDataBody.insertBefore(row, historicalDataBody.firstChild);

N;
}

function calculateAverageEmotionData(faces) {
const emotionCounts = {};

const emotionConfidences = {};

faces.forEach(face => {
const { emotion, confidence } = face;
if (lemotionCounts[emotion]) {
emotionCounts[emotion] = 0;
emotionConfidences[emotion] = 0;
}
emotionCounts[emotion]++;

emotionConfidences[emotion] += confidence;

N;

const averageEmotions = Object.keys(emotionCounts).map(emotion => ({

emotion,

averageConfidence: (emotionConfidences[emotion] / emotionCounts[emotion]).toFixed(2)

N

return averageEmotions;

}

// Function to start periodic emotion analysis
function startPeriodicAnalysis(interval = 3000) {
setinterval(analyzeEmotion, interval);

}

// Start periodic analysis when the page loads
document.addEventListener('DOMContentLoaded’, () => {

startPeriodicAnalysis(3000);
};

// Function to export data
function exportData(format) {
const patientld = getPatientldFromURL();
if (patientld) {
alert('Exporting data for patient S{patientld} as S{format.toUpperCase()}....");
}else {
alert(*No patient ID found.’);
}
}

// Function to get patient ID from URL
function getPatientldFromURL() {
const urlParams = new URLSearchParams(window.location.search);

return urlParams.get('id');

}

</script>

</body>

</html>

Views .py :

from pyexpat.errors import messages

from django.http import StreamingHttpResponse, JsonResponse
from django.views.decorators.csrf import csrf_exempt
import cv2

import numpy as np

import base64

from emotion.models import signup

from django.shortcuts import redirect, render

from mentalhealth.views import health

from mentalhealth.models import Patient

from .utils.video_stream import VideoCamera

from .utils.emotion_detector import EmotionDetector

Global instances (for demo purposes - consider thread-local storage for production)
video_camera = VideoCamera()

emotion_detector = EmotionDetector()

def index(request):

return render(request, 'index.html')

def login(request):
if request.method == "POST":
email = request.POST["email"]

password = request.POST["password"]

Authenticate user

user = signup.objects.filter(email=email).first()

if user and user.password == password: # In production, use check_password
request.session["user_id"] = user.id
request.session["email"] = user.email
request.session["industry"] = user.industry
return redirect("dashboard")
else:

return render(request, "login.html", {"error": "Invalid email or password."})

return render(request, "login.html")

def sign_up(request):
if request.method == 'POST":
email = request.POST["email"]
password = request.POST["password"]

industry = request.POST["industry"]

Create new user

user = signup.objects.create(email=email, password=password, industry=industry)

Log the user in by setting session variables
request.session["user_id"] = user.id
request.session["email"] = user.email

request.session["industry"] = user.industry

return redirect("dashboard")

return render(request, "signup.html")

def dashboard(request):
if "user_id" not in request.session:
return redirect("login")
if request.session["industry"]=="personal":
return render(request, "index.html")
if request.session["industry"]=="healthcare":

return redirect("health")

def logout(request):
request.session.flush()

return redirect("login")

@csrf_exempt # Temporary for testing - use proper CSRF protection in production
def video_feed(request):
def generate():
while True:
frame = video_camera.get_frame()
if frame is None:
break
yield (b'--frame\r\n’

b'Content-Type: image/jpeg\r\n\r\n' + frame + b"\r\n\r\n')

return StreamingHttpResponse(
generate(),

content_type="multipart/x-mixed-replace; boundary=frame'

@csrf_exempt
def detect_emotion(request):
if request.method == 'POST":

try:

Get frame from camera directly
frame = video_camera.get_frame()
if frame is None:

return JsonResponse({"error": "Failed to capture frame"}, status=400)

Convert frame to OpenCV format
img_array = np.frombuffer(frame, dtype=np.uint8)

img = cv2.imdecode(img_array, flags=cv2.IMREAD_COLOR)

Detect emotion
processed_frame = emotion_detector.detect_emotion(img)

emotion, confidence = emotion_detector.get_latest_emotion()

Detect all faces and their emotions
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = emotion_detector.face_cascade.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=5, minSize=(30, 30))

Prepare response data

faces_data =[]

for (x, y, w, h) in faces:
face_img = gray[y:y+h, x:x+w]
resized = cv2.resize(face_img, (48, 48))
normalized = resized / 255.0
reshaped = np.reshape(normalized, (1, 48, 48, 1))
result = emotion_detector.model.predict(reshaped)
label = np.argmax(result, axis=1)[0]

confidence = np.max(result) * 100

Extract face region from the original frame

face_region = img[y:y+h, x:x+w]

Convert face region to base64-encoded data URL
_, buffer = cv2.imencode('.jpg', face_region)

face_data_url = base64.b64encode(buffer).decode('utf-8')

Add face data to the response
faces_data.append({
"emotion": emotion_detector.labels_dict[label],
"confidence": confidence,
"bbox": [int(x), int(y), int(w), int(h)], # Bounding box coordinates

"face_img": face_data_url

Draw rectangle and emotion text on frame
cv2.rectangle(processed_frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.putText(processed_frame, emotion_detector.labels_dict[label], (x, y-10),
cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)

return JsonResponse({
"faces": faces_data,
"processed_frame": base64.b64encode(cv2.imencode('.jpg', processed_frame)[1]).decode()
N
except Exception as e:
return JsonResponse({"error": str(e)}, status=500)

return JsonResponse({"error": "Invalid request"}, status=400)

